Connect with us
What youve heard so far is true Apples new FineWoven What youve heard so far is true Apples new FineWoven

News

“What you’ve heard so far is true: Apple’s new FineWoven cases and accessories are very bad.” Reviews show the cases are incredibly easy to damage

Published

on

While more and more reviews of the new iPhones are being published on the Internet, it is worth paying attention to the reviews and reviews of the new FineWoven cases. Because, judging by these very reviews and reviews, the covers turned out terrible.

What youve heard so far is true Apples new FineWoven

Journalists from The Verge directly call them very bad and categorically terrible.

Guys, what you have heard so far is true. Apple’s new FineWoven iPhone cases and accessories are bad. Very bad. I’ve been puzzling over them for the past week, looking at them from different angles. Seven days later I still can’t figure them out and I have no choice but to say it out loud: FineWoven is very bad

Journalists note that the covers deteriorate as easily and quickly as possible. One of the FineWoven wallets had some wear out of the box. And if you simply run your fingernail over such material, the mark that appears will remain forever. Actually, on this video You can clearly see how easy it is to damage the material of new covers.

If that’s what Apple intended, then apparently users haven’t liked it so far, and if it wasn’t intended, then it’s unclear how it all went into production.

Click to comment

Leave a Reply

Your email address will not be published.

Components

Small, but remote. Corsair unveils SSD MP600 Micro in M.2 2242 form factor

Published

on

Small but remote Corsair unveils SSD MP600 Micro in M2

Most modern solid-state drives have the M.2 2280 form factor, but sometimes you need a much more compact SSD – M.2 2242. Corsair did just that.

Small, but remote.  Corsair unveils SSD MP600 Micro in M.2 2242 form factor

In the photo you can see the MP600 Micro model in the specified form factor. The length of such a drive is 42 mm, although there is also an M.2 2230 that is only 30 mm long.

The new product supports PCIe 4.0 and is characterized by data transfer speeds of up to 5100 MB/s for reading and 4300 MB/s for writing. Performance is respectively 600,000 and 890,000 IOPS. These parameters are typical for the 1 TB model, which also has a resource of 600 TBW.

It remains to add that the new product is based on 176-layer Micron 3D TLC NAND memory and is priced at $70.

Continue Reading

Components

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

Published

on

Huawei defeated American sanctions the Chinese company now has its

Five years under strict American sanctions, which cut Huawei off from advanced single-chip systems, have yielded results: the company has its own 5-nanometer processor made in China.

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

There is an interesting story with this processor. Five days ago, Huawei introduced the Qingyun L540 laptop based on the Kirin 9006C SoC: and at that time, all the characteristics of the device were revealed, but nothing was reported about the central element of the hardware platform. Now Huawei has updated the description on the website, which clearly states that the Kirin 9006C is manufactured using the 5 nm process technology.

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

The official description says that the single-chip system has eight cores and a maximum frequency of 3.13 GHz. The Gizmochina resource adds: the CPU is made according to a two-cluster design – with four Arm Cortex-A77 cores and four more Arm Cortex-A55 cores.

Let’s remember that earlier Huawei had a 7-nanometer SoC Kirin 9000S, and it is used in the flagships of the Mate 60 line. Kirin 9000S is produced by SMIC, and the same company most likely produces the 5-nanometer Kirin 9006C.

Continue Reading

News

Intel, where is the gain from new architectures? Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

Published

on

Intel where is the gain from new architectures Core Ultra

Yesterday we took a look at the first tests of the Core Ultra 7 155H, which at first glance are not impressive. Today the first test results of the flagship Core Ultra 9 185H appeared on the Internet.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

This CPU has the maximum number of cores for Meteor Lake: six large, eight small and two small in the SoC. The CPU operates at frequencies up to 5.1 GHz. Now there is a result only in CPU-Z: 767 and 8097 points in single-threaded and multi-threaded modes, respectively.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

In this case, we are interested in both, since the single-threaded mode shows the benefits of the new architecture, and Meteor Lake has both large and small cores with the new architecture.

As you can see, in single-threaded mode the new product is faster than the Core i5-13500H, but slower than the Core i7-13800H. That is, no advantage in single-threaded performance from switching to a new architecture is visible, but this is if we ignore the issue of power consumption. Formally, the TDP of the Core Ultra 9 185H and Core i7-13800H is the same and is 45 W. If the actual consumption is also approximately equal, then it turns out that, indeed, there is no performance gain from the transition to new architectures.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

If we talk about multi-threaded mode, here, interestingly, the situation is a little better, but not that radically. Yes, the Core Ultra 9 185H is already ahead of the Core i7-13800H, and noticeably ahead (by 15%), but the Core i9-13900H is already ahead of the new product by about 10%. And at the same time, all these three CPUs have the same number of large and small cores, except for the small cores in the Meteor Lake SoC. And if you count them, then the new product has even more cores.

Thus, if we summarize yesterday’s data with today’s, it turns out that we should not expect any tangible performance gain from switching from Raptor Lake to Meteor Lake when comparing CPUs with similar configurations. At the same time, Meteor Lake has a much more powerful iGPU and is likely still noticeably lower power consumption, although yesterday’s tests showed that the Ryzen 7040 is even better in this regard thanks to the much more modern 4 nm process technology.

Continue Reading

Most Popular