Connect with us
Results of test shootings of the Euclid telescope Results of test shootings of the Euclid telescope

News

Results of test shootings of the Euclid telescope

Published

on

“After twelve years of development and production of Euclid, it is exciting and moving to see these first images. But it will be possible to show them to the public after the scientific group has worked on them. The first scientific publication will be published in January,” said Giuseppe Racca, head of the Euclid project at ESA.

Launched on a SpaceX Falcon 9 rocket from Cape Canaveral on July 1, the 2-ton space telescope is designed to study the Universe for answers to how dark matter and dark energy shaped the Universe over billions of years.

It took Euclid a month to arrive at the L2 Lagrange point between the Earth and the Sun, located 1.5 million kilometers from Earth in the direction opposite to the Sun. Once this point was reached, the space equipment had to undergo a two-month check before scientific research could begin. However, during testing of the instruments, problems were discovered due to which the telescope could not provide images with the highest resolution. The problems were serious enough that the ESA suspended tests and began searching for solutions to the problem. Within a few weeks, solutions were found and the situation improved significantly, allowing the telescope to obtain hundreds of test images of galaxies.

Results of test shootings of the Euclid telescope

A month after the launch of the Euclid telescope, ESA released a set of raw test images from the VISible Instrument (VIS), a near-infrared spectrometer and photometer (NISP). Source: ESA/Euclid/Euclid Consortium/NASA, CC BY-SA 3.0 IGO

Giuseppe Racca said that once Euclid was in orbit, the science team discovered that extraneous light was entering the telescope’s field of view, which was affecting the light sensor and making it difficult to observe very dim galaxies. This was a big problem that could have undermined the mission. To solve this problem, the team rotated the telescope two and a half degrees on its axis. This was enough to get rid of excess light.

To take multiple images or perform spectral and photometric measurements in the infrared spectrum, the position sensor must be able to accurately hold the telescope in the desired direction for 75 minutes, guided by calibration stars. But in some positions, high-energy cosmic rays and solar protons interrupted the sensor, creating signals that it misinterpreted as real stars. Scientists took into account this possible effect in simulations, but in the real space environment the effect was stronger than expected.

This problem was discovered in early August and on August 18 they interrupted measurements where extraneous light was observed while performing other observations. Development and testing of new software to solve the problem took about two months. After a software update, the telescope has been operating normally for the past two weeks, but scientists need to ensure that the telescope continues to function correctly for the six-year mission. Every morning they check the data coming from ESA Chile’s space complex, and so far everything is going well.

Results of test shootings of the Euclid telescope

The 1.2 meter diameter primary mirror of the ESA Euclid mission. Source: Airbus

The quality of Euclid is comparable to that of the Hubble mission, but Euclid can cover in one week what Hubble could cover in five years. More than 1000 photos of amazing quality have already been transferred. Some scientists have accessed the images and found them remarkable. Over six years, Euclid will observe billions of galaxies and create the largest three-dimensional map of the Universe ever created. Some 2,000 scientists around the world are already involved in sharing initial images and data.

In May 2027, NASA’s Nancy Grace Roman Telescope will join the study of dark matter and dark energy with even more powerful instruments. The Euclid and Nancy Grace Roman missions have complementary strategies: Euclid’s earlier survey of large areas of the sky will allow it to carry out a reconnaissance mission, while the second telescope will focus on a smaller area, exploring the Universe with greater depth and precision.

Click to comment

Leave a Reply

Your email address will not be published.

Components

Small, but remote. Corsair unveils SSD MP600 Micro in M.2 2242 form factor

Published

on

Small but remote Corsair unveils SSD MP600 Micro in M2

Most modern solid-state drives have the M.2 2280 form factor, but sometimes you need a much more compact SSD – M.2 2242. Corsair did just that.

Small, but remote.  Corsair unveils SSD MP600 Micro in M.2 2242 form factor

In the photo you can see the MP600 Micro model in the specified form factor. The length of such a drive is 42 mm, although there is also an M.2 2230 that is only 30 mm long.

The new product supports PCIe 4.0 and is characterized by data transfer speeds of up to 5100 MB/s for reading and 4300 MB/s for writing. Performance is respectively 600,000 and 890,000 IOPS. These parameters are typical for the 1 TB model, which also has a resource of 600 TBW.

It remains to add that the new product is based on 176-layer Micron 3D TLC NAND memory and is priced at $70.

Continue Reading

Components

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

Published

on

Huawei defeated American sanctions the Chinese company now has its

Five years under strict American sanctions, which cut Huawei off from advanced single-chip systems, have yielded results: the company has its own 5-nanometer processor made in China.

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

There is an interesting story with this processor. Five days ago, Huawei introduced the Qingyun L540 laptop based on the Kirin 9006C SoC: and at that time, all the characteristics of the device were revealed, but nothing was reported about the central element of the hardware platform. Now Huawei has updated the description on the website, which clearly states that the Kirin 9006C is manufactured using the 5 nm process technology.

Huawei defeated American sanctions: the Chinese company now has its own 5-nanometer processor

The official description says that the single-chip system has eight cores and a maximum frequency of 3.13 GHz. The Gizmochina resource adds: the CPU is made according to a two-cluster design – with four Arm Cortex-A77 cores and four more Arm Cortex-A55 cores.

Let’s remember that earlier Huawei had a 7-nanometer SoC Kirin 9000S, and it is used in the flagships of the Mate 60 line. Kirin 9000S is produced by SMIC, and the same company most likely produces the 5-nanometer Kirin 9006C.

Continue Reading

News

Intel, where is the gain from new architectures? Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

Published

on

Intel where is the gain from new architectures Core Ultra

Yesterday we took a look at the first tests of the Core Ultra 7 155H, which at first glance are not impressive. Today the first test results of the flagship Core Ultra 9 185H appeared on the Internet.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

This CPU has the maximum number of cores for Meteor Lake: six large, eight small and two small in the SoC. The CPU operates at frequencies up to 5.1 GHz. Now there is a result only in CPU-Z: 767 and 8097 points in single-threaded and multi-threaded modes, respectively.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

In this case, we are interested in both, since the single-threaded mode shows the benefits of the new architecture, and Meteor Lake has both large and small cores with the new architecture.

As you can see, in single-threaded mode the new product is faster than the Core i5-13500H, but slower than the Core i7-13800H. That is, no advantage in single-threaded performance from switching to a new architecture is visible, but this is if we ignore the issue of power consumption. Formally, the TDP of the Core Ultra 9 185H and Core i7-13800H is the same and is 45 W. If the actual consumption is also approximately equal, then it turns out that, indeed, there is no performance gain from the transition to new architectures.

Intel, where is the gain from new architectures?  Core Ultra 9 185H was slower than Core i9-13900H with the same number of cores

If we talk about multi-threaded mode, here, interestingly, the situation is a little better, but not that radically. Yes, the Core Ultra 9 185H is already ahead of the Core i7-13800H, and noticeably ahead (by 15%), but the Core i9-13900H is already ahead of the new product by about 10%. And at the same time, all these three CPUs have the same number of large and small cores, except for the small cores in the Meteor Lake SoC. And if you count them, then the new product has even more cores.

Thus, if we summarize yesterday’s data with today’s, it turns out that we should not expect any tangible performance gain from switching from Raptor Lake to Meteor Lake when comparing CPUs with similar configurations. At the same time, Meteor Lake has a much more powerful iGPU and is likely still noticeably lower power consumption, although yesterday’s tests showed that the Ryzen 7040 is even better in this regard thanks to the much more modern 4 nm process technology.

Continue Reading

Most Popular